Mobile machine learning papers
Last Update: May 6, 2017.
I know, I know, no one really needs one more long lists of selected papers about ML. But I need this list to be somewhere so that I can drop the link with a message: “Say who needs ML on mobile one more time.” 🤓
During the last year, my work was revolving around mobile information security, so the list is obviously biased in this direction. As usually, order is random.
Applications: Computer Vision
Andrey Ignatov, Nikolay Kobyshev, Kenneth Vanhoey, Radu Timofte, Luc Van Gool. (2017). DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks. arXiv
Joachim Dehais, Marios Anthimopoulos, Sergey Shevchik, Stavroula Mougiakakou. (2017). Two-view 3D Reconstruction for Food Volume Estimation. arXiv
Michał Nowicki, Jan Wietrzykowski, Piotr Skrzypczyński. (2017). Real-Time Visual Place Recognition for Personal Localization on a Mobile Device. arXiv
Kyle Krafka, Aditya Khosla, Petr Kellnhofer, Harini Kannan, Suchendra Bhandarkar, Wojciech Matusik, Antonio Torralba. (2016). Eye Tracking for Everyone. arXiv
Applications: Mobile Sensors
del Rosario, M. B., Redmond, S. J., & Lovell, N. H. (2015). Tracking the evolution of smartphone sensing for monitoring human movement. NCBI
Yao, S., Hu, S., Zhao, Y., Zhang, A., & Abdelzaher, T. (2016). DeepSense: A Unified Deep Learning Framework for Time-Series Mobile Sensing Data Processing. arXiv
Shoaib, M., Bosch, S., Incel, O., Scholten, H., Havinga, P. (2015). A Survey of Online Activity Recognition Using Mobile Phones. MDPI
Habib, M. A., Mohktar, M. S., Kamaruzzaman, S. B., Lim, K. S., Pin, T. M., Ibrahim, F. (2014). Smartphone-based solutions for fall detection and prevention: challenges and open issues. NCBI
Lane, N. D., & Georgiev, P. (2015). Can Deep Learning Revolutionize Mobile Sensing? PDF
Masaya Inoue, Sozo Inoue, Takeshi Nishida. (2017). Deep Recurrent Neural Network for Mobile Human Activity Recognition with High Throughput. arXiv
Dogukan Erenel, Haluk O. Bingol. (2016). An Accelerometer Based Calculator for Visually Impaired People Using Mobile Devices. arXiv
Applications: NLP
Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kaufmann et al. (2016). Smart Reply: Automated Response Suggestion for Email. arXiv
Applications: Mobile Infosec
Marquardt, P., Verma, A., Carter, H., & Traynor, P. (2011). (sp) iPhone: decoding vibrations from nearby keyboards using mobile phone accelerometers. PDF
Narain, S., Sanatinia, A., & Noubir, G. (2014). Single-stroke language-agnostic keylogging using stereo-microphones and domain specific machine learning. PDF
Mehrnezhad, M., Toreini, E., Shahandashti, S. F., Hao, F. (2015). TouchSignatures: Identification of User Touch Actions Based on Mobile Sensors via JavaScript. PDF
Mehrnezhad, M., Toreini, E., Shahandashti, S. F., Hao, F. (2016). Stealing PINs via Mobile Sensors: Actual Risk versus User Perception. International Journal of Information Security. PDF
Carlini, N., Mishra, P., Vaidya, T., Zhang, Y., Sherr, M., Shields, C., Zhou, W. (2016). Hidden Voice Commands. PDF, slides and Video
Orekondy, T., Schiele, B., Fritz, M. (2017). Towards a Visual Privacy Advisor: Understanding and Predicting Privacy Risks in Images. arXiv
Upal Mahbub, Sayantan Sarkar, Vishal M. Patel, Rama Chellappa. (2016). Active User Authentication for Smartphones: A Challenge Data Set and Benchmark Results. arXiv
Pouya Samangouei, Rama Chellappa. (2016). Convolutional Neural Networks for Attribute-based Active Authentication on Mobile Devices. arXiv
CNNs Compression for Mobile Devices
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv
Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S., Dally, W. J., & Keutzer, K. (2016). SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and <1MB Model Size. arXiv
Karen Ullrich, Edward Meeds, Max Welling. (2017). Soft Weight-Sharing for Neural Network Compression. arXiv
YunheWang, Chang Xu, Shan You, Dacheng Tao, Chao Xu (2016). Compressing Convolutional Neural Networks in the Frequency Domain. PDF
Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, Yixin Chen. (2015). Compressing Convolutional Neural Networks. arXiv
Han, S., Mao, H., & Dally, W. J. (2016). Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. arXiv
Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J. (2016). Quantized Convolutional Neural Networks for Mobile Devices. arXiv
Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., Dally, W. J. (2016). EIE: Efficient Inference Engine on Compressed Deep Neural Network. arXiv
Wenjia Meng, Zonghua Gu, Ming Zhang, Zhaohui Wu. (2017). Two-Bit Networks for Deep Learning on Resource-Constrained Embedded Devices. arXiv
Renzo Andri, Lukas Cavigelli, Davide Rossi, Luca Benini. (2017). YodaNN: An Architecture for Ultra-Low Power Binary-Weight CNN Acceleration. arXiv
Distributed Learning
McMahan, H. B., Moore, E., Ramage, D., Hampson, S., Arcas, B. A. y. (2016). Communication-Efficient Learning of Deep Networks from Decentralized Data. arXiv
Best Practices
(Platform agnostic)
Wujek, B., Hall, P., & Güneș, F. (2016). Best Practices for Machine Learning Applications. PDF
Domingos, P. (2012). A few useful things to know about machine learning. PDF
Leslie N. Smith. Best Practices for Applying Deep Learning to Novel Applications. arXiv
Martin Zinkevich. Rules of Machine Learning: Best Practices for ML Engineering. PDF